Derivation of a Best Linear Discriminant Function for Multispectral Image Classification
نویسندگان
چکیده
منابع مشابه
Separable Linear Discriminant Classification
Linear discriminant analysis is a popular technique in computer vision, machine learning and data mining. It has been successfully applied to various problems, and there are numerous variations of the original approach. This paper introduces the idea of separable LDA. Towards the problem of binary classification for visual object recognition, we derive an algorithm for training separable discri...
متن کاملAccuracy improvement of Best Scanline Search Algorithms for Object to Image Transformation of Linear Pushbroom Imagery
Unlike the frame type images, back-projection of ground points onto the 2D image space is not a straightforward process for the linear pushbroom imagery. In this type of images, best scanline search problem complicates image processing using Collinearity equation from computational point of view in order to achieve reliable exterior orientation parameters. In recent years, new best scanline sea...
متن کاملA Trivial Linear Discriminant Function
In this paper, we focus on the new model selection procedure of the discriminant analysis. Combining resampling technique with k-fold cross validation, we develop a k-fold cross validation for small sample method. By this breakthrough, we obtain the mean error rate in the validation samples (M2) and the 95% confidence interval (CI) of discriminant coefficient. Moreover, we propose the model sel...
متن کاملRetinex preprocessing for improved multispectral image classification
The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed befor...
متن کاملMultivariate Image Texture by Multivariate Variogram for Multispectral Image Classification
Traditional image texture measure usually allows a texture description of a single band of the spectrum, characterizing the spatial variability of gray-level values within the singleband image. A problem with the approach while applied to multispectral images is that it only uses the texture information from selected bands. In this paper, we propose a new multivariate texture measure based on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1988
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.24.83